MOTEUR ELECTRIQUE TRIPHASEE

Le moteur asynchrone triphasé est largement
utilisé dans l’industrie, sa simplicité de
construction en fait un matériel très fiable et
qui demande peu d’entretien. Il est constitué
d’une partie fixe, le stator qui comporte le
bobinage, et d’une partie rotative, le rotor qui
est bobiné en cage d’écureuil. Les circuits
magnétiques du rotor et du stator sont
constitués d’un empilage de fines tôles
métalliques pour éviter la circulation de
courants de Foucault.
2

Catégorie :

Description

Principe de fonctionnement
Le principe des moteurs à courants alternatifs réside dans l’utilisation d’un champ magnétique
tournant produit par des tensions alternatives
La circulation d’un courant dans une bobine crée un
champ magnétique B. Ce champ est dans l’axe de la
bobine, sa direction et son intensité sont fonction du
courant I. C’est une grandeur vectorielle.
Si le courant est alternatif, le champ magnétique varie en sens et
en direction à la même fréquence que le courant.
Si deux bobines sont placées à proximité l’une de
l’autre, le champ magnétique résultant est la
somme vectorielle des deux autres. Dans le cas
du moteur triphasé, les trois bobines sont
disposées dans le stator à 120° les unes des
autres, trois champs magnétiques sont ainsi créés

Compte-tenu de la nature du courant sur le réseau triphasé, les trois champs sont déphasés
(chacun à son tour passe par un maximum). Le champ magnétique résultant tourne à la même
fréquence que le courant soit 50 tr/s = 50Tr/s = 3000 tr/mn.
Les 3 enroulements statoriques créent donc un champ magnétique tournant, sa fréquence de
rotation est nommée fréquence de synchronisme. Si on place une boussole au centre, elle va
tourner à cette vitesse de synchronisme.
Le rotor est constitué de barres d’aluminium noyées
dans un circuit magnétique. Ces barres sont reliées à
leur extrémité par deux anneaux conducteurs et
constituent une « cage d’écureuil ». Cette cage est en
fait un bobinage à grosse section et très faible
résistance.

Cette cage est balayée par le champ magnétique tournant. Les conducteurs sont alors
traversés par des courants de Foucault induits. Des courants circulent dans les anneaux formés
par la cage, les forces de Laplace qui en résultent exercent un couple sur le rotor. D’après la loi
de Lenz les courants induits s’opposent par leurs effets à la cause qui leur a donné naissance.
Le rotor tourne alors dans le même sens que le champ mais avec une vitesse légèrement
inférieure à la vitesse de synchronisme de ce dernier.
Le rotor ne peut pas tourner à la même vitesse que le champ magnétique, sinon la cage ne
serait plus balayée par le champ tournant et il y aurait disparition des courants induits et donc
des forces de Laplace et du couple moteur. Les deux fréquences de rotation ne peuvent donc
pas être synchrones d’où le nom de moteur asynchrone.
Prenons l’exemple d’un moteur dont la fréquence de rotation nominale relevée sur la place
signalétique est de 2840 tr/mn, ce moteur étant alimenté en courant de 50Hz, la fréquence de
rotation du champ magnétique est donc de 50 tr/s soit 3000 Tr/mn. Le rotor est donc balayé par
un champ magnétique qui tourne à un fréquence de rotation relative de 3000-2840=160 tr/mn.